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Abstract

It is well known that medication adherence is critical to patient outcomes and

can decrease patient mortality. The Pharmacy Quality Alliance (PQA) has rec-

ognized and identified medication adherence as an important indicator of

medication-use quality. Hence, there is a need to use the right methods to

assess medication adherence. The PQA has endorsed the proportion of days

covered (PDC) as the primary method of measuring adherence. Although easy

to calculate, the PDC has however several drawbacks as a method of measur-

ing adherence. PDC is a deterministic approach that cannot capture the com-

plexity of a dynamic phenomenon. Group-based trajectory modeling (GBTM)

is increasingly proposed as an alternative to capture heterogeneity in medica-

tion adherence. The main goal of this paper is to demonstrate, through a simu-

lation study, the ability of GBTM to capture treatment adherence when

compared to its deterministic PDC analogue and to the nonparametric longitu-

dinal K-means. A time-varying treatment was generated as a quadratic func-

tion of time, baseline, and time-varying covariates. Three trajectory models are

considered combining a cat's cradle effect, and a rainbow effect. The perfor-

mance of GBTM was compared to the PDC and longitudinal K-means using

the absolute bias, the variance, the c-statistics, the relative bias, and the rela-

tive variance. For all explored scenarios, we find that GBTM performed better

in capturing different patterns of medication adherence with lower relative

bias and variance even under model misspecification than PDC and longitudi-

nal K-means.
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1 | INTRODUCTION

Medication adherence is an important determinant of patient outcomes, their quality of life, and overall healthcare
utilization.1 Gaining a better understanding of the drivers of medication adherence is crucial in ensuring treatment
success, particularly for chronic conditions, or multimorbid patients who may suffer from treatment fatigue.2 Iden-
tifying prevalent adherence patterns and the corresponding population groups may assist decision-makers in
targeting these populations and tailoring interventions to enhance medication adherence. For example, in a meta-
analysis conducted by Lewey et al,3 it was discovered that non-white patients exhibit lower adherence rates to
statin treatment. Such findings are valuable for guiding future research and interventions aimed at improving
adherence within these specific subgroups. Additionally, in randomized controlled trials (RCTs), many patients fail
to complete their intended treatment due to drug-related toxicity.4 Adherence studies can play a crucial role in this
context by identifying the patient profiles associated with incomplete treatment and their distinguishing
characteristics.

Adherence can be measured in a number of ways. The Pharmacy Quality Alliance (PQA) organization has endorsed
the use of the proportion of days covered (PDC) as the primary method of measuring adherence.5,6 Defined as the num-
ber of fill days divided by the number of days between the index date (first fill) and the end of the follow-up perio,5

PDC has been increasingly recommended over the medication possession rate (MPR), where the number of supplies is
considered, mostly because it can account for the timing of medication refills.5,6

While PDC is easy to calculate, there are several drawbacks to using it as the primary measure of medication adher-
ence. There is no universally accepted threshold for “adequate” PDC. While the PQA reports clinical evidence
supporting a PDC threshold of 80%, they note that this may instead be 90% for antiretroviral medications for manage-
ment of HIV.7 Further, they specify that PDC is a poor capture for acute therapies of shorter duration, such as for hepa-
titis C treatment. There is a lack of quantitative evidence regarding this cut-off, and it is important to recognize that
there is no ideal threshold that can be universally applied.8 PDC, as a deterministic measure, may not be able to capture
the complexity of the dynamic nature of medication adherence.9,10

Longitudinal clustering approaches may be better suited to capture the dynamic nature of behaviors associated
with medication adherence. For example, group-based trajectory modeling (GBTM) consists of finite mixture model-
ing that can be useful in identifying latent subgroups within the population that may not be readily observable.11,12 It
is useful in summarizing developmental patterns of a time-varying phenomena,12 achieved by clustering similar pro-
files into homogeneous subgroups. Diverse applications of GBTM, highlighting its significance in healthcare, are evi-
dent in the literature.9,13–16 Alternatively, we may use k-means for longitudinal data (KML).17 KML has the ability to
recover latent subgroups by using metrics such as the Euclidean distance to assign individuals to trajectory groups.
Like PDC, KML requires no model specification for the trajectories. In the literature, several applications of KML
exist.18–20 Although an exploratory approach contrary to GBTM which is a probabilistic-based modeling approach,
there are advantages in considering KML as a longitudinal clustering method. KML is less computationally extensive
than GBTM and is more scalable.21 Indeed, its algorithmic simplicity can make it easier to implement and faster to
execute.21 Formalized statistical comparisons are lacking to compare the performance of GBTM in capturing medica-
tion adherence to that of other approaches, such as PDC and KML. This paper intends to do so systematically,
through a comprehensive simulation study that encompasses various sample sizes, functional time-varying treatment
representations, follow-up periods, and treatment-covariate relationships. To the best of our knowledge, this paper
presents the first comprehensive simulation study to measure GBTM's performance in assessing medication
adherence.

The paper is organized as follows. In Section 2, we review PDC, KML, and GBTM in greater detail. In Section 3,
we review model selection criteria for GBTM, that will be put to use in Sections 4 and 5, where we outline the tech-
nical details of our simulation study and its results, respectively. We conclude the paper with a discussion in
Section 6.

2 | APPROACHES TO STUDYING MEDICATION ADHERENCE

In this section, we will provide the reader with a brief introduction to the medication adherence measurement methods
that will be our subject of investigation later in the paper.

512 DIOP ET AL.

 15391612, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pst.2365, W

iley O
nline L

ibrary on [23/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2.1 | Proportion of days covered

PDC has enjoyed growing popularity in measuring medication adherence in medical research.10 PDC refers to a per-
centage of days that a patient has a supply of medication available within a specified time frame. In practice, PDC is
commonly estimated using claims data with the prescription fill dates and number of supply days for each prescrip-
tion.5 More specifically,

PDC¼Number of days covered with the drug during the follow�up period
Number of days in the follow�up period after the index date

ð1Þ

As seen in (1), the denominator represents the number of days between the first fill and the end of the follow-up
period, while the numerator represents the total number of days covered by prescription fills during that same time
frame.5,10 Let Ait ¼ Ai1,…Aitð Þ be the observed binary treatment sequence (or treatment trajectory) up to time t¼ 1,…,K
of the ith individual, i¼ 1,…,n, where n is the sample size. When there is no stockpiling, meaning patients are taking
their drug without anticipation or delay, we can define the PDC for the ith individual as follows:

PDC¼
PK

t¼1I Ait ¼ 1ð Þ
K

, ð2Þ

where I Ait ¼ 1ð Þ is an indicator of whether or not the ith individual took their treatment at time t. PDC is a deterministic
metric that ranges between 0 and 1. It is typically categorized based on an arbitrary threshold. Most commonly, the
threshold of 80% is used to classify individuals as adherent ≥ 80%ð Þ or non-adherent < 80%ð Þ. PDC cannot account for
the dynamic nature of treatment patterns (trajectory) over time, as it simply measures the proportion of days that are
covered with the drug prescription over the total follow-up period. Moreover, as a straightforward metric to assess med-
ication adherence, PDC is not designed to handle the complexity of claims data and might lead to measurement
errors.22 Such measurement errors can mislead interpretations of the groups and exacerbate biases in subsequent ana-
lyses, particularly when the goal is to assess the association between medication adherence groups and endpoints
outcomes.

In this paper, we categorized the adherence variable using PDC quantiles, to allow for more granularity. This
approach is similar to the one employed in previous GBTM studies.9

2.2 | Longitudinal K-means

The k-means adaptation for longitudinal data (KML) utilizes traditional distance metrics, such as the Euclidean dis-
tance (also known as the L2 norm) to cluster individuals into different trajectory groups.17 It generalizes the standard
k-means method to the case of longitudinal data. Here, the k-means algorithm, usually applied to cross-sectional data,
is repeatedly applied at each measurement time point. In the initial step of KML, centers of each trajectory group are
computed, followed by the assignment of observations to their nearest trajectory group and a subsequent calculation of
some measure of within-group variability (meant to be minimized), averaged over the different trajectory groups. This
iterative process continues until convergence is achieved.17 In KML, the formula for calculating the Euclidean distance
between two data points that represent treatment trajectories in a multidimensional space can be written as:

d Ai,Ai0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

XK
t¼1

Ait�Ai0tð Þ2
vuut : ð3Þ

In this context, d is a distance metric, Ai and Ai0 represent the ith and i
0th individuals. Different distance metrics d

will yield different partitions. For instance, k-medians employs the Manhattan distance, also referred to as the L1
norm.21 On the other hand, k-modes that utilize the mode as the central point for partitioning is the preferred choice
for handling categorical data. In the simulation study appearing in this paper, the R package kml was used to perform
KML.23
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2.3 | Group-based trajectory modeling

In GBTM, we model the data to follow a mixture distribution whose components are linked to latent classes in the pop-
ulation.12 The model assumes J distinct groups, each characterized by its own mean trajectory.24 The ith patient's likeli-
hood contribution is then

P AiK
� �¼XJ

j¼1

πj
YK
t¼1

P Aitjzi ¼ jð Þ: ð4Þ

where πj, also called the jth mixture proportion, denotes the marginal probability that a random individual belongs to
the jth trajectory group, j¼ 1,…,J, and zi denotes the group-membership or trajectory group for the ith individual. It is a
common practice to model the trajectory groups as a polynomial function of time.12 For example, if we assume a qua-
dratic relation, we could use the logistic regression model

logitP Aitjzi ¼ jð Þ¼ θj0þθj1tþθj2t
2,

where the parameters θj, j¼ 1,…,J, describe the treatment trajectory over time for the jth group. We can also add
covariates in the model:

logitP Aitjzi ¼ jð Þ¼ θj0þθj1tþθj2t
2þθj3Viþθj4Lit,

where Vi and Lit are the baseline and time-varying covariates for the ith individual. The main assumption of the model
(4) is local independence, that is, treatment at different time-points Ai1,…,AiK are assumed to be mutually independent
conditional on group membership16,25: AitqAit0 j zi ¼ j, t≠ t0, j¼ 1, � � �,J .

In practice, when fitting a GBTM, both the groups' polynomial order and the number of groups must be specified. It
is common practice to first estimate the model parameters, then to assign individuals to a trajectory group using their
highest probability of belonging to that group, namely

bzi ¼ argmax
j¼1,…,J

P zi ¼ jjAiK ,bθ,bπ� �
,

where

P zi ¼ jjAiK ,bθ,bπ� �
¼

bπjP AiK jzi ¼ j,bθj� �
PJ

j0¼1bπ0jP AiK jzi ¼ j0,bθj� � ð5Þ

and the “hat” notation stands for the maximum likelihood estimator.
Choice of a sufficient number of periods for identifying groups can be guided by the identifiability conditions appli-

cable to a binary variable. Formally, in the context of binomial distributions with repeated measures, it has been dem-
onstrated that trajectory groups become identifiable when the number of repetitions for an individual, denoted as K is
strictly greater than 2J�1, that is, J < Kþ1ð Þ=2.26,27

To ensure proper reporting of results from GBTM analyses, one may employ the guidelines for reporting on
latent trajectories analysis (GRoLTS) checklist.28 This checklist includes 16 items that serve as valuable guidelines
to improve the reproducibility of trajectory analyses. For continuous endpoints, the distinction is often made with
latent class growth analysis (LCGA).29 Seeing as this paper's focus is the modeling of a binary time-varying treat-
ment, we will not attempt to differentiate between GBTM and LCGA. To perform GBTM in R, the package flexmix
is used.30
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3 | STATISTICAL CRITERIA FOR MODEL SELECTION

One main advantage of GBTM is that, as a probabilistic-based approach, it can be subjected to various goodness of fit
and model selection criteria, to assist with the task of selecting model hyperparameters (i.e., the number of trajectories
and the polynomial degree).28,29 Similar criteria do not exist for PDC. As for KML, certain criteria do exist to choose the
number of groups, such as the Calinski-Harabasz Index,17 also known as the variance ratio criterion (VRC). This index
is commonly employed to assess the quality of clusters in cluster analyses, and serves as a valuable tool for assessing
the degree of separation between groups, thus offering an alternative or complementary approach to the elbow
method31 for identifying the optimal number of clusters.

3.1 | The Bayesian information criterion

When performing GBTM, the GRoLTS guidelines recommend using the Bayesian information criterion (BIC) for model
selection. BIC balances model fit and complexity, thus enhancing robustness and interpretability of results in trajectory
analysis.28,32 The BIC criterion is defined by Nagin12 as follows

BIC¼ logL bπ,bθ� �
�0:5p log nð Þ, ð6Þ

where p is the number of parameters of the model (increasing with the number of groups and the polynomial degree),

n the number of patients and L bπ,bθ� �
the likelihood of the model, evaluated at the maximum likelihood estimates.12 It

is noteworthy that the BIC for model selection tends to favor more complex models, such as those with a higher num-
ber of groups. Given this inclination, the reliability of BIC can sometimes be questioned. As a result, alternative
approaches like cross-validation error or bootstrapping33,34 have been suggested in the literature to choose the number
of groups and the polynomial form.

3.2 | Average posterior probability of assignment and odds of correct classification

Other classification statistics include the average posterior probability of assignment (APPA) and the odds of correct
classification (OCC).29 These statistics are useful in assessment of model adequacy whose primary focus is goodness of
fit. The jth group APPA is

APPAj ¼ 1
nj

Xnj
i¼1

P zi ¼ jjAiK ,bθ,bπ� �
, ð7Þ

where nj is the sample size for the jth group, P zi ¼ jjAiK ,bθ,bπ� �
is given in (5), representing the degree of confidence in

the assignment of subjects to trajectories. The jth group OCC is then given by

OCCj ¼
APPAj= 1�APPAj

� �
bπj= 1�bπj� � : ð8Þ

This can be thought of as the ratio of the odds assignment to this group for members of this group to the odds of
random assignment to this group. Larger values of both APPA and OCC indicate better goodness of model fit. An APPA
value greater than 0:7 is generally considered acceptable.29 An OCC value greater than 5 is seen as an evidence that the
model is effective in its classification task.29,32

3.3 | The entropy information criterion

The inclusion of the entropy information criterion (EIC) in the reporting of trajectory analysis results is also rec-
ommended by the GroLTS. The EIC, given by

DIOP ET AL. 515

 15391612, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pst.2365, W

iley O
nline L

ibrary on [23/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



EIC¼
Xn
i

XJ

j

P zi ¼ jjAiK
� �

logP zi ¼ jjAiK
� �

: ð9Þ

is a measure of the degree of separation between groups.29

4 | SIMULATION STUDY

In the upcoming sections, our goal is to evaluate the performance of GBTM in capturing medication adherence, com-
pared to its deterministic PDC counterpart and the non-parametric KML approach. We investigate various factors that
could influence these methods, including different sample sizes, varying lengths of follow-up periods, the functional
relationship between treatment and covariates, diverse levels of medication adherence, and scenarios where the bound-
aries between trajectory groups are not distinct.

4.1 | Data generating mechanism

To adopt a realistic data generating mechanism, we assumed that the time-varying treatment is a function of baseline
and time-varying covariates alone, and is only dependent on time through the change in these covariates' values. Specif-
ically for GBTM, this will give a better understanding of the impact of including covariates when modeling the treat-
ment, and the impact of modeling the treatment as solely a polynomial function of time. Based on the identifiability
conditions described in Section 4, the follow-up periods for 3, 4, and 5 groups have been chosen to be 6, 8, and
10, respectively. These are the minimum time points required to reliably identify the trajectory groups. We also explored
longer follow-up periods, specifically 24, 100, and 365 measures for n¼ 1000, to assess their impact on biases when
comparing GBTM and KML. Figure 1 depicts the possible causal relationship between these variables for a study with
K ¼ 3 time points, using a directed acyclic graph (DAG). The same principle is applied to K ¼ 8 and K ¼ 10 time points
when modeling four and five trajectory groups.

Baseline covariates, time-varying covariates and time-varying treatment for the jth group are generated as follows

V �N 0,1ð Þ,
Lj,1 �ℬ 1,expit pjþV

� �� �
,and

Aj,1 �ℬ 1,expit pjþV
� �� �

,

8>>><
>>>:

where pj, j¼ 1,…,J , are arbitrary probabilities chosen to simulate the treatment and covariate values at baseline, and
expit xð Þ¼ exp xð Þ= 1þ exp xð Þð Þ. Note that Aj and Lj indicate here the treatment trajectory and covariate values for the
jth group.

For t¼ 2,…,K, we set

Lj,t �ℬ 1,p¼ expit 0:5Lj,t�1þ0:25Aj,t�1þV
� �� �

and

Aj,t �ℬ 1,p¼ expit βj,0þβj,1Lj,tþβj,2L
2
j,tþβj,3Aj,t�1�Lj,tþβj,4Aj,t�1þV

� �� �
,

8<
:

=1

=1

=2 =3

=2 =3

FIGURE 1 Directed acyclic graph representing the data-structure with a time-varying treatment A, time-varying covariates L, V

baseline characteristics, and K ¼ 3 time points.
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where Lj,t is the jth group's covariate value at time t, Aj,t is the jth group's treatment at time t, and βj,0,…,βj,4 parameterize
the trajectory for the jth group. For three trajectory groups, we used β1,0 ¼ ��� ¼ β1,4 ¼ 1:42, β2,0 ¼ ��� ¼ β2,4 ¼ 0:83, and
β3,0 ¼ ��� ¼ β3,4 ¼�0:67. For four and five trajectory groups, we additionally used β4,0 ¼ �� � ¼ β4,4 ¼ 0:25
and β5,0 ¼ �� � ¼ β5,4 ¼�1:42.

4.2 | Scenarios

To provide different perspectives on how treatment is modeled, we considered three scenarios, allowing for a compre-
hensive assessment of various factors.

• Scenario I: Modeling of the treatment does not involve covariates. Only a polynomial function of time is estimated.
• Scenario II: Modeling of the time-varying treatment includes only baseline values. No time-varying covariates are

considered.
• Scenario III: Both baseline values and time-varying covariates are incorporated in the treatment model.

Data for this study were generated by considering fixed numbers of three, four, and five trajectory groups, which
represent models I, II, and III, respectively. The goal is to identify these groups using PDC, KML, and GBTM. Moreover,
we aimed to address both the cat's cradle effect and the rainbow effect.35 The cat's cradle effect refers to GBTM's ten-
dency to identify four distinct groups across different settings, including low and high adherence as well as increasing
and decreasing adherence patterns, as observed in prior research.35 The rainbow effect, on the other hand, occurs when
the boundaries between trajectory groups become less clear.35 Figure 2 reveals the average treatment adherence over
time for the different groups in the labelled data as it was generated. The reader can notice the existence of low and
high adherence patterns in all three scenarios. Models II and III in particular, also contain increasing and decreasing
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FIGURE 2 Trajectory models considered for the simulation study.
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adherence patterns. In all three models, trajectories 1 and 2 were hard to disentangle at later time points, while in
model III, trajectories 4 and 5 also very nearly overlap.

The time-varying treatment variable was generated using a binary distribution, indicating whether or not a patient
took the treatment at each time point during the follow-up period. Alternatively, we can think of it as the presence or
absence of a claim date in the database. Crucially, the data was generated without allowing for stockpiling, which can
occur in real-world scenarios. Time-varying covariate was also generated using a binary distribution, while the baseline
covariate followed a normal distribution. Various treatment models were explored, including linear, quadratic, and
cubic functions of time, as well as models that incorporated baseline and time-varying covariates. Note that this was
only done for GBTM. Indeed, PDC is deterministic and KML is not designed for modeling variables as functions of
others.

4.3 | Performance measures

To evaluate the performance of different medication adherence approaches, we considered different metrics. The main
quantity of interest is the absolute bias, which is used in the calculation of other metrics. The absolute bias is computed
as the difference between the true treatment adherence and the estimated treatment adherence. True adherence is
defined as the proportion of the observed treatment within each group initially chosen when generating the data, while
estimated treatment adherence is defined as the proportion of the observed treatment within each group identified
using either PDC, KML, or GBTM.

1. Absolute Bias (AB)

AB¼Ptrue Adherenceð Þ�Pestimated Adherenceð Þ: ð10Þ

2. Relative Bias (RB): the bias of one method relative to another. For example

RBPDC=GBTM ¼ABPDC=ABGBTM: ð11Þ

3. Relative Variance (RV): the relative difference in variance between two methods. For example

RVPDC=GBTM ¼VarPDC=VarGBTM ð12Þ

4. C-statistics: The overall predictive accuracy for predicting adherence is defined as the area under the receiver operat-
ing characteristic (ROC) curve.36 Higher C-statistic values signify superior discrimination.

5. Monte Carlo Error: The Monte Carlo standard error for the bias is estimated by

VarMethod=
ffiffiffi
B

p
, ð13Þ

where VarMethod is the variance of the adherence estimates using GBTM, KML, or PDC and B the number of replica-
tions for the simulation study.37

These metrics provide a comprehensive assessment of the model's performance by quantifying the accuracy of
adherence probability estimation and the variability between different models.
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5 | SIMULATION RESULTS

Tables 1–3 display the results of the simulation study for all three scenarios: modeling the treatment in GBTM as a
function of time alone, time and baseline covariates, and time and time-varying covariates, for 3,4, and 5 trajectory
groups. The results are presented for various sample sizes (n = 100, 500, 1000, and 5000) and polynomial degree to
model the treatment in GBTM: linear, cubic, quadratic, quadratic with baseline, and quadratic with baseline and time-
varying covariates. For each simulation, we performed 1000 replications.

Overall for most of the trajectory groups, GBTM demonstrated lower relative bias, even when models were mis-
specified. For instance in Table 1, in Scenario I, the relative bias for trajectory groups 1 and 2 was two to three times
higher in PDC compared to GBTM with a quadratic function of time. Similarly, for KML, the adherence estimates for
trajectory group 2 were almost three times more biased than those obtained with GBTM. In terms of variance of the
adherence estimates, PDC and KML exhibited lower overall variance compared to GBTM. This result is expected as
these approaches cannot fully capture the heterogeneity present in the data compared to a probabilistic approach such
as GBTM.

In Table 4, where we compared GBTM and KML across longer follow-up periods, we found that extending the
follow-up period did not seem to impact GBTM's performance. We noted that the biases in GBTM remained relatively
consistent for longer follow-up periods of 24, 100, and 365 days. The accuracy of predictions measured with the
C-statistics was good for both GBTM and KML, even for a period of 365 days, with nearly 1 for GBTM and 0.97
for KML.

In Models I–III, we included trajectory groups that were close enough to simulate a lack of variability within the
data. When the separation between trajectory groups was minimal, all methods yielded biased adherence estimates,
particularly for trajectory groups 1 and 2 for all models (see Figure 2). In such scenarios, GBTM faces difficulties in
accurately identifying the trajectory groups, as also demonstrated in Reference 32 However, GBTM produced for most
of the trajectory groups the least biased estimates. Interestingly, including both baseline and time-varying covariates in
the treatment model did not appear to enhance the trajectory model's ability to capture adherence patterns (see
Figure 3). As the sample size increased, we observed a reduction in both bias and variance. These results held true for

TABLE 1 Relative bias and variance when comparing PDC and KML to GBTM for three trajectory groups.

Scenario I Scenario II Scenario III

PDC/GBTM2 KML/GBTM2 PDC/GBTM2 KML/GBTM2 PDC/GBTM2 KML/GBTM2

RB RV RB RV RB RV RB RV RB RV RB RV

n¼ 100 Group 1 0.78 0.91 0.39 0.94 0.8 0.87 0.41 0.95 0.30 0.08 0.69 0.20

Group 2 3.41 0.14 3.08 0.82 3.2 0.14 2.95 0.85 1.47 0.05 1.24 0.42

Group 3 3.79 0.36 1.12 0.36 3.5 0.37 1.05 0.39 14.07 0.74 3.50 0.52

RB RV RB RV RB RV RB RV RB RV RB RV

n¼ 500 Group 1 0.74 0.60 0.42 0.81 0.73 0.61 0.40 0.76 0.78 0.47 0.44 0.64

Group 2 3.52 0.04 2.94 1.18 3.65 0.05 3.06 1.16 3.54 0.02 2.87 0.75

Group 3 2.83 0.12 0.85 0.24 2.93 0.13 0.88 0.21 3.30 0.08 0.97 0.17

RB RV RB RV RB RV RB RV RB RV RB RV

n¼ 1000 Group 1 2.65 0.06 0.79 0.20 2.63 0.07 0.78 0.21 3.04 0.05 0.94 0.15

Group 2 3.47 0.03 2.96 1.62 3.49 0.03 2.91 1.65 3.52 0.02 3.01 0.90

Group 3 0.73 0.44 0.41 0.80 0.73 0.46 0.40 0.81 0.76 0.38 0.42 0.64

RB RV RB RV RB RV RB RV RB RV RB RV

n¼ 5000 Group 1 2.19 0.01 0.73 0.19 2.25 0.01 0.74 0.18 2.49 0.01 0.81 0.12

Group 2 3.02 0.01 2.58 1.76 3.16 0.01 2.69 1.76 3.26 0.00 2.73 1.05

Group 3 0.75 0.15 0.43 0.66 0.74 0.12 0.42 0.59 0.75 0.11 0.43 0.54

Note: Scenario I: In GBTM, the treatment is modeled with only a function of time; Scenario II: In GBTM, the treatment is modeled with a function of time and
baseline covariates; Scenario III: In GBTM, the treatment is modeled with a function of time, baseline and time-varying covariates.

Abbreviations: GBTM2, group-based trajectory modeling with a quadratic function of time; KML, K-means longitudinal; PDC, proportion of days covered.
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FIGURE 3 Absolute bias with three trajectory groups and different model for the treatment. GBTM, group-based trajectory modeling;

KML, K-means longitudinal; PDC, proportion of days covered.
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different numbers of trajectory groups (see Tables 2, 3 and Figures 4, 5). We observed that for three trajectory groups,
biases were generally low for GBTM compared to PDC and KML. However, as we increased the model's complexity—
by raising the number of trajectory groups to 4 and 5 and including covariates—there was a noticeable decline in
GBTM's performance relative to PDC and KML small sample sizes (n¼ 100). Notably, in the scenario of five groups, the
model failed to converge when both baseline and time-varying covariates were incorporated into the GBTM model.
Despite these challenges, GBTM demonstrated overall robustness in identifying trajectory groups even in the presence
of a small sample size.

The Monte Carlo error ranged from 0.0004 to 0.001 overall. The accuracy of prediction (C-statistic) was high when
dealing with three trajectory groups, approaching a value of 1. However, as the number of trajectory groups increased,
the accuracy of prediction decreased for KML. For instance, the accuracy of prediction reached 0.61 when the number
of trajectory groups was 5, and n¼ 5000. GBTM and PDC maintained a level of accuracy of prediction between 0.98
and 1 for 5 trajectory groups, and n¼ 5000.

5.1 | Illustration of three trajectory groups from a single dataset

Here, we wish to provide a clear illustration of the different methods in use. A dataset of size n¼ 1000 was generated,
featuring three trajectory groups using the data-generating mechanism defined in Section 4.1. The true trajectory
groups are depicted in Figure 6A. These groups consist of a highly adherent group (Group 1), a group of individuals
who progressively adhere to the treatment (Group 2), and a third group of individuals with the lowest adherence to the
treatment (Group 3). The treatment was modeled with GBTM using various functions of time, including linear, qua-
dratic, cubic, quadratic with baseline, and time-varying covariates, as well as the KML and PDC methods.

TABLE 2 Relative bias and variance when comparing PDC and KML to GBTM for four trajectory groups.

PDC/GBTM2 KML/GBTM2 PDC/GBTM2 KML/GBTM2 PDC/GBTM2 KML/GBTM2

RB RV RB RV RB RV RB RV RB RV RB RV

n¼ 100 Group 1 2.50 0.02 0.63 0.01 �0.44 0.10 �0.11 0.05 �0.31 0.06 1.43 0.13

Group 2 7.39 0.12 �0.13 0.03 5.10 0.14 �0.12 0.05 2.32 0.20 2.00 1.00

Group 3 5.02 0.36 �2.83 0.19 3.04 0.23 �1.68 0.12 1.75 0.17 3.51 0.60

Group 4 2.58 0.29 �5.85 0.27 �2.25 0.26 5.12 0.26 �4.47 0.56 �0.45 0.69

RB RV RB RV RB RV RB RV RB RV RB RV

n¼ 500 Group 1 0.41 0.02 0.02 0.01 �1.31 0.03 �0.01 0.01 �0.65 0.23 0.63 0.88

Group 2 5.19 0.15 �2.97 0.04 �3.62 0.07 2.08 0.02 �10.76 0.03 �17.34 0.27

Group 3 5.09 0.03 �0.02 0.01 8.58 0.05 �0.06 0.02 2.94 0.13 1.34 2.27

Group 4 2.52 0.09 �5.18 0.09 49.80 0.38 �101.28 0.38 13.70 0.98 4.93 1.70

RB RV RB RV RB RV RB RV RB RV RB RV

n¼ 1,000 Group 1 0.39 0.01 0.00 0.01 �1.26 0.03 �0.04 0.01 �0.53 0.20 0.27 1.01

Group 2 6.10 0.09 �3.55 0.02 �1.89 0.05 1.11 0.01 �2.99 0.02 �4.77 0.24

Group 3 3.73 0.01 �0.02 0.01 10.10 0.05 �0.02 0.01 3.68 0.10 1.45 2.86

Group 4 2.40 0.05 �4.84 0.05 13.58 0.36 �27.38 0.36 8.82 0.84 3.50 1.78

RB RV RB RV RB RV RB RV RB RV RB RV

n¼ 5,000 Group 1 0.36 0.34 0.00 0.15 �1.11 0.01 �0.01 0.00 �0.42 0.12 0.11 1.92

Group 2 9.04 0.02 �5.27 0.01 �1.26 0.02 0.73 0.00 �1.09 0.01 �1.73 0.53

Group 3 3.89 0.00 0.00 0.00 55.84 0.02 �0.02 0.01 5.23 0.07 1.95 10.11

Group 4 2.75 0.02 �5.52 0.02 7.29 0.17 �14.57 0.19 7.78 1.00 3.09 4.89

Note: Scenario I: In GBTM, the treatment is modeled with only a function of time; Scenario II: In GBTM, the treatment is modeled with a function of time and
baseline covariates; Scenario III: In GBTM, the treatment is modeled with a function of time, baseline and time-varying covariates.
Abbreviations: GBTM2, group-based trajectory modeling with a quadratic function of time; KML, K-means longitudinal; PDC, proportion of days covered.
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In this illustration of a single simulated dataset, GBTM with quadratic and cubic functions of time appeared to cap-
ture the true trajectory groups the best. This observation aligns with the fact that the data was simulated using a qua-
dratic function of time-varying covariates. It is important to note that these results may vary when fitting other GBTM
or KML models, even with the same dataset. Indeed, the parameters of a mixture model are typically estimated using
an iterative method based on the maximum likelihood principle, such as the expectation–maximization
(EM) algorithm.38 Consequently, the estimation is influenced by the initial starting points, and there is no guarantee of
finding the global maximum.38 This entails that a local maximum might be identified, which provides a solution

TABLE 3 Relative bias and variance when comparing PDC and KML to GBTM for five trajectory groups.

Scenario I Scenario II Scenario III

PDC/GBTM2 KML/GBTM2 PDC/GBTM2 KML/GBTM2 PDC/GBTM2 KML/GBTM2

RB RV RB RV RB RV RB RV RB RV RB RV

n = 100 Group 1 �0.14 0.01 0.20 0.01 �0.24 0.06 0.35 0.02 NA NA NA NA

Group 2 0.85 0.20 3.45 0.58 0.60 0.24 2.45 0.67 NA NA NA NA

Group 3 0.32 0.16 1.31 0.51 0.58 0.16 1.99 0.49 NA NA NA NA

Group 4 4.08 0.13 6.11 0.75 1.37 0.08 2.23 0.45 NA NA NA NA

Group 5 0.09 0.08 �0.77 0.27 �0.16 0.08 1.53 0.27 NA NA NA NA

n = 500 Group 1 0.14 0.03 0.00 0.20 �0.24 0.03 �0.06 0.24 �1.25 0.06 0.30 0.45

Group 2 1.73 0.04 1.34 0.61 0.75 0.02 0.56 0.32 2.01 0.03 1.54 0.61

Group 3 0.46 0.04 2.15 0.52 12.54 0.06 60.79 0.75 0.37 0.05 1.63 0.68

Group 4 1.49 0.08 4.88 1.00 1.47 0.10 4.74 1.23 0.53 0.05 1.64 0.64

Group 5 �0.26 0.00 0.07 0.00 �1.44 0.01 0.26 0.03 �1.47 0.03 0.29 0.07

RB RV RB RV RB RV RB RV RB RV RB RV

n = 1,000 Group 1 0.13 0.02 0.22 0.28 �0.18 0.02 �0.17 0.32 �1.12 0.05 �2.01 0.84

Group 2 1.72 0.02 0.89 0.51 0.70 0.01 0.36 0.30 2.10 0.03 1.00 0.58

Group 3 0.48 0.02 2.47 0.66 5.42 0.03 26.62 0.94 0.33 0.02 1.68 0.69

Group 4 2.48 0.05 5.97 1.31 2.39 0.05 5.62 1.11 0.57 0.03 1.33 0.61

Group 5 �0.24 0.00 �0.02 0.00 �1.48 0.00 �0.22 0.01 �1.25 0.01 �0.14 0.03

n = 5,000 RB RV RB RV RB RV RB RV RB RV RB RV

Group 1 0.20 0.01 0.88 0.44 �0.94 0.00 �0.38 0.01 �1.69 0.02 �7.28 1.71

Group 2 1.42 0.01 0.63 0.39 �6.31 0.01 �8.74 0.73 2.19 0.01 0.98 0.46

Group 3 0.54 0.01 3.18 0.68 1.79 0.01 10.19 0.84 0.30 0.00 1.71 0.52

Group 4 29.21 0.02 41.43 1.54 0.75 0.00 0.34 0.30 0.81 0.00 1.15 0.38

Group 5 �0.25 0.00 �0.10 0.00 �0.23 0.01 �1.02 0.40 �1.03 0.00 �0.41 0.01

Note: Scenario I: In GBTM, the treatment is modeled with only a function of time; Scenario II: In GBTM, the treatment is modeled with a function of time and
baseline covariates; Scenario III: In GBTM, the treatment is modeled with a function of time, baseline and time-varying covariates. Here, NA stands for non-
available.
Abbreviations: GBTM2, group-based trajectory modeling with a quadratic function of time; KML, K-means longitudinal; PDC, proportion of days covered.

TABLE 4 Comparison of GBTM and KML in terms of absolute bias for longer follow-up periods and n¼ 1000.

24 periods 100 periods 365 periods

GBTM KML GBTM KML GBTM KML

Group 1 �0.094 �0.075 �0.109 �0.090 �0.108 �0.090

Group 2 0.011 0.152 0.016 0.143 0.011 0.127

Group 3 0.005 0.024 0.006 0.017 0.004 0.012

Abbreviations: GBTM, group-based trajectory modeling with a linear function of time; KML, K-Means longitudinal.
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FIGURE 4 Absolute bias with four trajectory groups and different model for the treatment. GBTM, group-based trajectory modeling;

KML, K-means longitudinal; PDC, proportion of days covered.
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FIGURE 5 Absolute bias with five trajectory groups and different model for the treatment. GBTM, group-based trajectory modeling;

KML, K-means longitudinal; PDC, proportion of days covered.
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FIGURE 6 Ability of GBTM, KML and PDC to capture medication adherence through visualization. GBTM, group-based trajectory

modeling; KML, K-means longitudinal; PDC, proportion of days covered.

TABLE 5 Choice of the best GBTM model.

BIC EIC APPA OCC

Linear 13,147 0:98 ≥ 0:99 > 500

Quadratic 12,972 0:99 ≥ 0:99 > 1100

Cubic 13,075 1:00 � 1:00 > 1000

Quadratic + Time-varying Covariates 13,002 0:99 � 1:00 > 500

Abbreviations: APPA, average posterior probability of assignment; BIC, Bayesian criterion information; EIC, entropy information criterion; GBTM, group-
based trajectory modeling; OCC, odds of correct classification.
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confined to a specific neighborhood of the overall distribution. Such a solution may not necessarily have the highest
likelihood, as would be the case with a global maximum. Consequently, the solutions might vary with each iteration,
even when using the same dataset. This is also true for other clustering algorithms, such as KML. PDC, however,
remains consistent as it does not rely on any specific modeling assumptions.

For GBTM, metrics such as BIC, EIC, APPA, and OCC can be calculated to select the best model. In Table 5, the
GBTM model with a quadratic function of time emerges as the best choice. Specifically, this model exhibits the lowest
BIC, the highest OCC, and relatively good and comparable EIC and APPA scores when compared to other modeling
options.

5.2 | Guidance for practitioners

In this section, we outline guidance on how to use GBTM in practice and cases where KML can be considered.

5.2.1 | Model selection and adequacy

When performing GBTM, we recommend that practitioners go beyond the BIC and entropy and explore other metrics
such as APPA or OCC for model selection and adequacy assessment. Our findings indicate that when using GBTM the
accuracy of predictions was not affected by the number of groups considered or the length of the follow-up period. In
contrast, the accuracy of KML was impacted by the number of groups. These results highlight the fact that GBTM is a
robust approach for summarizing patterns in treatment trajectories.

5.2.2 | Model specification and inclusion of covariates

In our simulations, inclusion of covariates did not significantly improve GBTM's ability to identify different trajectory
groups. GBTM primarily aims at identifying groups of individuals with similar patterns over time. Including covariates
can make the interpretation of trajectories more complex due to the interactions between the time-varying variable and
the covariates. Moreover, GBTM focuses on identifying clusters of individuals following similar temporal patterns.
Using solely a polynomial function of time to model treatment trajectories enables the model to capture each group's
inherent trajectory based on observed data points. This method prioritizes trajectory shapes, often the primary interest
in such analyses. Polynomial functions offer flexibility in modeling a wide range of trajectory shapes, including linear,
quadratic, or cubic trends, allowing the model to fit complex patterns over time without additional covariates. Our find-
ings suggested that a relatively simple model specification for GBTM, such as a polynomial function of time, can be suf-
ficient for identifying hidden trajectory groups with relatively low biases.

5.2.3 | Sample sizes

Overall, GBTM performed better than PDC and KML for three trajectory groups but showed reduced performance as
model complexity increased. Based on our findings, GBTM model achieved adequate performance and convergence
with small sample sizes. This result holds when the number of trajectory groups is limited, and a low degree of the poly-
nomial function is chosen.

5.2.4 | Optimal follow-up period

The optimal follow-up period necessary for identifying the number of groups can be computed based on the
identifiability conditions. It is noteworthy that additional factors such as clinical relevance and insights from existing
literature, should be considered, when determining the optimal length of follow-up periods.
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5.2.5 | Role of covariates in predicting medication adherence

Covariates play an important role in mapping patient health status to their adherence probability, understanding differ-
ent adherence profiles, and predicting adherence probability. We recommend a two-step approach. In a first step, trajec-
tory groups can be identified using a polynomial function of time. Then, association between groups and covariates can
be investigated using a descriptive or predictive method. This approach allows to separate the identification step of tra-
jectory groups from the groups' characterization.

5.2.6 | Computational challenges

GBTM can pose computational challenges when handling large datasets or when dealing with numerous groups with
high polynomial degrees. For example, with n¼ 50,000 and 6 periods, GBTM, using a simple linear function of time,
required 387 s (6.45min), whereas KML took approximately 121.8 s (2.03min). For n¼ 1000 and 365 periods, GBTM
needed 10.45 s, compared to KML's 3.53 s. Consequently, performing GBTM with large datasets can be demanding. In
presence of large datasets, KML can be considered for a first assessment of trajectory groups.

6 | DISCUSSION

In this paper, we compared GBTM with PDC and KML methods for their performance in modeling medication adher-
ence. This comparison takes into account various factors, including different follow-up periods, the number of groups,
and the functional forms of time and covariates. To the best of our knowledge, our study represents the first study that
assessed the performance of GBTM in identifying medication adherence groups. Under the scenarios explored in our
study, we found the GBTM to stand out in terms of bias in the estimation of adherence, whereas the PDC approach
showed the highest degree of bias. This finding highlights the limitations of PDC in capturing the complexities of
dynamic (time-varying) medication adherence. For GBTM, our findings suggest that employing a relatively simple
model specification such as a polynomial function of time is sufficient for identifying with relatively low biases hidden
trajectory groups, if they exist. In other words, directly including baseline and time-varying covariates in the group-
based trajectory model does not seem to improve its ability to capture medication adherence. However, covariates are
useful for mapping patient health status to their adherence probability, in understanding the different adherence pro-
files and in predicting adherence probability.

This study has its own limitations. Despite GBTM performing the best, it still produced considerable bias in the
adherence estimates. This points to the need for more methodological research to improve the way GBTM is used to
model and study medication adherence. While we showed in this study the superiority, on average, of GBTM compared
to PDC and KML, the identified trajectory groups may lack clear clinical significance or interpretation. Nonetheless,
GBTM takes a more rigorous approach in selecting thresholds than situations where choices may be made arbitrarily,
as can occur with PDC. Indeed, the use of checklists such as GRoLTS and numerous metrics for assessing adherence
modeling quality in GBTM can improve the quality of future applications. GBTM operates within a statistical frame-
work that allows for the testing of hypotheses about the number and nature of the trajectory groups, as well as the
inclusion of covariates and the examination of group membership probabilities. This provides a rich interpretive frame-
work for understanding the groups. In contrast, KML clustering is more of a descriptive, data-driven approach. It is use-
ful for exploratory data analysis but lacks the statistical underpinning for hypothesis testing or probabilistic
interpretation of group membership.

In future directions, Bayesian variants of GBTM that can incorporate prior knowledge about trajectory groups
should be further explored, to see if these approaches can lower the observed bias in the adherence estimates. Although
this work offers significant contributions to understanding the performance of GBTM and its practical applications, fur-
ther research is needed to explore the remaining possibilities encountered when using GBTM. Investigation of alterna-
tive approaches specifying the dynamic relationship between the time-varying treatment adherence and time-varying
covariates could be examined to see if bias in adherence estimation could be mitigated. It would be also interesting to
investigate how to improve the scalability of GBTM in the presence of large datasets.

Improving the understanding of medication adherence is critical for improving patient outcomes and also to
improve the optimization of healthcare resource utilization. Our study illustrates the potential to enhance medication
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adherence practices by shedding light on utilizing GBTM and facilitating more tailored interventions. Our research con-
tributes to the existing literature by providing a more thorough understanding of how GBTM models should be used in
practice.
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